Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Nat Prod ; 86(6): 1463-1475, 2023 Jun 23.
Article in English | MEDLINE | ID: covidwho-20235110

ABSTRACT

In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-ß-N-acetylgalactosamine-(1→4)-ß-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.


Subject(s)
COVID-19 , Sea Cucumbers , Animals , Anticoagulants/pharmacology , Sea Cucumbers/chemistry , Sulfates/chemistry , Heparin , SARS-CoV-2 , Polysaccharides/chemistry
2.
Int J Mol Sci ; 21(21)2020 Nov 07.
Article in English | MEDLINE | ID: covidwho-937518

ABSTRACT

Growing interest in hypertension-one of the main factors characterizing the cardiometabolic syndrome (CMS)-and anti-hypertensive drugs raised from the emergence of a new coronavirus, SARS-CoV-2, responsible for the COVID19 pandemic. The virus SARS-CoV-2 employs the Angiotensin-converting enzyme 2 (ACE2), a component of the RAAS (Renin-Angiotensin-Aldosterone System) system, as a receptor for entry into the cells. Several classes of synthetic drugs are available for hypertension, rarely associated with severe or mild adverse effects. New natural compounds, such as peptides, might be useful to treat some hypertensive patients. The main feature of ACE inhibitory peptides is the location of the hydrophobic residue, usually Proline, at the C-terminus. Some already known bioactive peptides derived from marine resources have potential ACE inhibitory activity and can be considered therapeutic agents to treat hypertension. Peptides isolated from marine vertebrates, invertebrates, seaweeds, or sea microorganisms displayed important biological activities to treat hypertensive patients. Here, we reviewed the anti-hypertensive activities of bioactive molecules isolated/extracted from marine organisms and discussed the associated molecular mechanisms involved. We also examined ACE2 modulation in sight of SARS2-Cov infection prevention.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antihypertensive Agents/pharmacology , Antiviral Agents/chemistry , Hypertension/drug therapy , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antihypertensive Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19/prevention & control , Fishes/metabolism , Halobacteriales/chemistry , Humans , Molecular Docking Simulation , Oncorhynchus keta/metabolism , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/drug effects , Sea Cucumbers/chemistry , Undaria/chemistry
3.
Food Funct ; 11(9): 7415-7420, 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-786676

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world at an unprecedented rate. In the present study, 4 marine sulfated polysaccharides were screened for their inhibitory activity against SARS-CoV-2, including sea cucumber sulfated polysaccharide (SCSP), fucoidan from brown algae, iota-carrageenan from red algae, and chondroitin sulfate C from sharks (CS). Of them, SCSP, fucoidan, and carrageenan showed significant antiviral activities at concentrations of 3.90-500 µg mL-1. SCSP exhibited the strongest inhibitory activity with IC50 of 9.10 µg mL-1. Furthermore, a test using pseudotype virus with S glycoprotein confirmed that SCSP could bind to the S glycoprotein to prevent SARS-CoV-2 host cell entry. The three antiviral polysaccharides could be employed to treat and prevent COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Phaeophyta/chemistry , Polysaccharides/pharmacology , Rhodophyta/chemistry , Sea Cucumbers/chemistry , Animals , Antiviral Agents/chemistry , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , Polysaccharides/chemistry , SARS-CoV-2 , Sharks , Sulfates/chemistry , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL